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Reverse flow and supersonic interference 

By JOSEPH H. CLARKE 
Division of Engineering, Brown University, Providence, Rhode Island 

(Received 19 January 1959) 

First, from a volumetric formulation of the momentum theorem of linearized 
theory, a general analytic proof is presented of the invariance of the drag of an 
arbitrary spatial distribution ofhorseshoevortices and sources under reversal of the 
undisturbed flow. By consideration of the interference drag of two such singularity 
distributions, a reverse-flow relation for steady subsonic or supersonic flow is 
then obtained. This relation, a generalization of the Ursell-Ward theorem, may be 
applied to configurations with bodies whose surfaces are not quasi-cylindrical and 
whose surface pressures are quadratically related to the perturbation velocity. 

The relation is used to discuss several interfering two-body arrangements in 
supersonic flow. It is shown that, in certain cases, the drag and lift may be 
determined without knowledge of the interference flow field associated with the 
arbitrarily prescribed body geometry. The simplicity of the results permits the 
formulation of optimum problems. The invariance of the drag under flow reversal 
with unchanged geometry is also established. 

Introduction 
The development of the reverse-flow or reciprocity relations of linear small- 

disturbance theory was initiated by the discovery of the invariance of the 
pressure drag of symmetric non-lifting wings in supersonic flow with respect to 
reversal of the flow direction (von K&rm&n 1947). The subject was treated in- 
dependently on a considerably more general basis a t  about the same time by 
Hayes (1947). The theoretical and practical ramifications of subsequent con- 
tributions are extensive and need not be recounted here. This research, however, 
has resulted in two principal theorems which are of interest in the present paper. 

In  connexion with the f is t ,  there is considered lineal, planar, or spatial 
distributions of horseshoe vortices and sources, singularities sufficient? to produce 
the same effect in the stream as any body or arrangement of bodies.$ It is shown 

t When the vorticity appearing in the general solution for the perturbation field is 
distributed over a cylindrical reference surface or a volume, it may be re-expressed as 
horseshoe vorticity. 

1 In this paper, the word body refers to any obstacle to which perturbation flow theory 
is applicable. By fusiform body is meant a body of fuselage or projectile shape. A slender 
body is a fusiform body whose section by meridional or transverse planes exhibits the degree 
of regularity required in the theory of Ward (1949). A quasi-cylindrical body is one whose 
boundary conditions and surface pressures may, within the approximation, be discussed 
on a cylindrical reference surface, with generators parallel to the undisturbed stream, 
which is near the actual surface (e.g. a pair of wing panels supported by an infinite body 
whose shape differs but slightly from a circular cylinder with fhite diameter). 
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that the drag of any distribution of these two singularities is unchanged if, in 
the undisturbed stream, the sign of the velocity vector is changed without change 
in Mach number or density (Hayes 1947). The sign of the singularity strengths 
may be reversed with the flow. Hayes’ theorem does not deal explicitly with the 
geometry of the system represented which is, in general, different in the reverse 
flow. The theorem has been discussed for planar wings in connexion with the 
development of conditions for minimum drag in the combined flow field (Jones 
1951) and for more general arrangements of bodies in the same connexion (Jones 
1956). The proofs are based on physical arguments concerning the interference 
between two discrete singularities in forward and reverse flow, and involve the 
superposition of the pressure and cross-flow induced by each in a reference plane 
containing the two singularities; the arguments do not deal explicitly with cases 
where the bodies are not quasi-cylindrical or the pressure is not linearly related 
to  the perturbation velocity. 

The second theorem mentioned is the Ursell-Ward theorem, which contains 
virtually all of the other theorems developed thus far for steady flow as special 
cases (Ursell & Ward 1950; Heaslet & Spreiter 1953). This is anidentityinvolving 
surface integrals related to the drag integral, and connecting a forward flow 
past a quasi-cylindrical body (or bodies) to the reverse flow past another such 
body which has the same reference surface; the ‘linear pressure relationship 
pertains. The theorem can be used to relate the flow past a body with specified 
geometry or pressure distribution to the reverse flow past a body whose geo- 
metry or pressure distribution may be independently specified. The two bodies 
may therefore be identical. As is evident in the formulation used in the present 
paper, this theorem contains the first theorem as a special case, but only for the 
quasi-cylindrical bodies to which it may be applied. 

Starting from a volumetric formulation of the momentum theorem, this 
paper presents, as a preliminary, a general analytic proof of Hayes’ theorem 
which clarifies aspects of the physical derivation discussed above. There is then 
obtained a reverse-flow theorem for steady subsonic or supersonic flow which is 
related to theursell-Ward theorem, but which may be applied as well to arrange- 
ments containing bodies whose surfaces are not quasi-cylindrical and whose 
surface pressures are not linearly related to the perturbation velocity. Whereas 
such bodies need not be identical in forward and reverse flow, they must be 
related in a manner to be discussed; this geometric restriction is concomitant 
with the relaxation of the two aforesaid restrictions. The relation is a general- 
ization, in the sense just indicated, of the Ursell-Ward theorem, and it is 
possible to obtain the surface representation of the results presented with a 
similar derivation. However, the relation is more generally formulated with use 
of the equality, in forward and reverse flow, of the interference drags of two spatial 
singularity distributions, the first associated with the bodies in forward flow and 
the second with the bodies in reverse flow. The underlying unity of the two 
theorems just discussed is therefore established, and a view consistent with the 
extensive interference literature is maintained. The present relation contains, 
in fact, the two theorems as special cases. 

In  the second portion of the paper, the reverse-flow relation is used to discuss 
18 Fluid Meoh. 6 
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the drag and lift of several interfering two-body arrangements in supersonic flow. 
The arrangements considered not only serve to exhibit some implications of 
the theorem, but are of theoretical and practical interest in themselves. The 
applicability of the relation is, however, by no means restricted to these specific 
configurations. 

Considerable attention has recently been devoted to the problem of achieving 
favourable interference in arrangements of bodies in a moderate supersonic flow, 
and in some cases optimum problems have been posed in very general terms. 
Reference is made to the methods of Jones (1956), Lomax (1955), Lomax 
& Heaslet (1956a) and E. W. Graham, Lagerstrom, Licher & Beane (1957). 
Frequently, problems are set such that the orientations and singularity dis- 
tributions of bodies in the arrangement are sought which reduce or minimize 
the drag of the system, subject to restraints on lift, volume, etc. (M. E. 
Graham 1955; Licher 1955; Lomax & Heaslet 19563; Friedman & Cohen 1954). 
When the bodies interfere, each induces a cross-flow on the other surfaces, result- 
ing in a distortion of the isolated boundaries associated with the singularities 
of each. The geometry of the arrangement is usually discussed only in general 
terms. 

When an optimum, or otherwise suitable, geometry is arrived at by such 
methods, it  is necessary in practice to determine the flow field, and particularly 
the drag and lift, produced by these boundaries for other values of incidence 
and Mach number. In any case, when the geometry of an arrangement is 
prescribed, cancellation of the mutual cross-flow by introduction of an interference 
flow is required. As illustrated by the wing-fuselage interference problem 
(see Lawrence & Flax 1954), the labour in determining the interference flow 
defined by this classical indirect formulation is great. Depending on how the 
problem is posed, favourable shapes might remain to be sought subsequent to 
the calculation. 

In  the present paper, the reverse-flow relation is first used to establish the 
invariance of the drag of the two-body arrangements under flow reversal with 
unchanged geometry. It is then shown that it is possible, for supersonic flow, to 
determine the drag and lift of certain of these interfering body arrangements, 
whose geometry is arbitrarily prescribed, with no knowledge of the interference 
flow field. The forces are constructed from the solution for the flow field of each 
body when it appears isolated in forward flow and in reverse flow. The deter- 
mination is possible when the interference flow produced on each body does not 
influence the other; when this restriction is not satisfied, an incomplete knowledge 
of the interference flow suffices for the determination of the aerodynamic forces. 
The method uses the reverse flow theorem to relate the force appearing when the 
two bodies interfere without mutual distortion in forward flow to the force 
appearing when the same bodies interfere with mutual distortion in the hypo- 
thetical reverse flow. The relations obtained are of sufficient simplicity to permit 
formulation of optimum problems. The method lends itself to application t o  
other related arrangements. 
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The aerodynamic force 
Consider the steady, homentropic flow of a compressible gas past an arrange- 

ment of bodies whose inclinations are small with respect to the remote uniform 
stream with velocity 

where 7.7 > 0 in forward flow and U < 0 in reverse flow, i is a unit vector in the 
positive direction of the Cartesian co-ordinate z, and j and k are similarly defined 
for the Cartesian co-ordinates y and z. If the fluid velocity q is written 

U = Ui, (1)  

q = u + v ,  

V = ui+vj+wk 
then the perturbation velocity 

is governed by the equation v.w = 0 

together with the definitions -B2 0 0 

where B2 = M2- 1,  M being the Mach number of the undisturbed stream. 
Further, v x v = o  

exterior to any regions of trailing vorticity. 
The aerodynamic force on the bodies may be evaluated through use of the 

momentum theorem. If equation ( 2 )  and the continuity equation are used 
therein, and the pressure p and density p are then eliminated by means of the 
approximate relations 

(6) 

(p-po)/po = - u . v - + v . w  (7 )  

and p/po = 1 - (M2/ 7 7 2 )  u. v, (8) 

where the subscript 0 denotes conditions in the undisturbed stream, the momen- 
tum theorem appears in the form (Ward 1955a) 

F = p o U x $  s n x V d S + p o $  s (+V.Wn-VW.n)dX. (9) 

Here S is any surface with outward unit normal n which completely encloses the 
bodies, and F is the total aerodynamic force on the bodies, provided that the 
total source strength enclosed by X is zero. The first term evidently gives a force 
perpendicular to the undisturbed stream. 

Equation (9) is correct within the quasi-cylinder approximation 

t <  1, (10) 

t2logt < 1, (11) 

t being the appropriate thickness ratio, or the slender body approximation 

but, depending on the choice of X, may contain terms of higher order than 
required. A lower approximation to (7) and (8), and therefore to (9), is often used 

18-2 
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for slender bodies which is, in fact, slightly too low if the bodies are closed. It is 
assumed that (9) is also adequate for arbitrary fusiform bodies, the approximation 
being (Lighthill 1945, 1954) 

and for arbitrary body arrangements. The condition (12) is about equivalent to 
(1  1) but may fall at least to (10) locally, as at shoulders. Within approximations 
(lo), (1 1) or (12), the boundary condition on the surfaces A of the bodies 

u< 1, (12) 

( U + V ) . n  = 0 (13) 

may be written ( U + W ) . n  = 0, (14) 
essentially because V and W differ only in their x-components and the x-com- 
ponent of n is small. The momentum flux given by (9) vanishes within the 
approximation of (14) to (13) when S is chosen as A .  If the drag D is defined as 
the component of F in the direction of flow, if edge forces are neglected and S is 
taken as A ,  and if use is made of (la), then (9) gives for the drag 

U 
D = -F. i  = (U.V+iV.W)n. id&,  

PI 
which is consistent with a surface integration of the pressure given by (7). For 
quasi-cylinders, however, the approximation to the pressure 

suffices, whereas for slender bodies the relation (Ward 1949) 

is required on or near the surface. Equation (17) is still correct for arbitrary 
fusiform bodies (Lighthill 1945, 1954). The term - $B2u2 in (15) may then always 
be discarded. 

Let the bodies be represented by a spatial distribution of vorticity and sources 
over the regions Tinterior to the surfaces A of the bodies (a thickness distribution 
can temporarily be ascribed to a plate wing). The spatial distribution corre- 
sponding to a given body is not generally unique, and this freedom might be used 
to smooth out any singularities appearing in the intensities of surface or lineal 
distributions. With the body interiors regarded as part of the fluid domain, the 
surface integrals in (9) may be transformed to volume integrals. The identity 
appropriate to the second integral follows from (34) below by discarding sub- 
scripts. Equation (9) may then be written (Ward 19553) 

(p-po)/po = -u.v = - uu 

(P -Po)lPo = - uu - Hu2 + w2) 

(16) 

(17) 

,- c 

F = ~ , u x J  VxVdT+p,J [Wx(VxV)-VV.W]dT. (18) 
T T 

Integration over the volume of each body gives the force on that body. A more 
direct derivation of (18) leads to difficulties in obtaining the correct approxima- 
tion to the integrands for slender and other fusiform bodies. 

Por a spatial distribution of vorticity with intensity S2 and sources with an 
intensityf such that the mass flux per unit volume is p,f, the linearized equations 
for V which replace (4) and (6) are (Ward 1955a) 

v .w = f, (19) 

and v x v = n ,  (20) 
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where f and 8 are related to the geometry. The conservation in space of vorticity 
is assured by the relation V . 8  = 0, 

which follows from (20). Let the vorticity at each point be resolved according 
to the expression 8 = Q,i+o, 

(21) 

(22) 

where w is a vector perpendicular to the x-axis which is referred to here as bound 
vorticity. If the drag is formed from (18), and if ( 5 ) ,  (19), (20) and (22) are used, 
there results after slight rearrangement 

Comparison with the lateral force in (18), a version of the Kutta-Joukowski 
relation, shows that the term po U x o is the elemental lateral force perpendicular 
to the bound vorticity at each point; comparison with ( 16) shows that - po U . V 
is equal to the linear homentropic pressure difference. The first term is then the 
product of the elemental lateral force and the component of the cross-flow in its 
direction. The general volumetric representation of drag then yields a result 
closely resembling, in its two terms, the familiar relations of wing theory for a 
planar distribution of lift and thickness, respectively. Its significance stems 
from its applicability to the more restrictive fusiform bodies as well as to quasi- 
cylinders, so that no distinction between the classes of bodies need be made over 
T. Thus (23) permits, as for quasi-cylinders, the convenient decomposition of 
the drag of a distribution of singularities into self-induced drag and various 
interference drags (E. W. Graham et al. 1957). On the other hand, the formula- 
tion (15) requires, for bodies which are not quasi-cylindrical, integration of the 
product of the quadratic pressure and cross-flow over the actual body surfaces 
produced by the collective effect of all singularities; the drag decomposition 
mentioned is not possible. Equation (9), with a truncated cylindrical surface 
1.9, for example, provides a reference surface and quadratic products permitting 
drag decomposition for both classes of bodies, but in this formulation each point 
on the body surfaces A corresponds to a region of S, and vice versa. 

The exhibited properties of the momentum theorem have their counterparts 
in the reverse flow relations to follow. 

The perturbation velocity field 

appropriate form of which is 
A solution to (19) and (20) has been given by Ward (1952a,b, 1955a), the 

where r = xi+yj+zk, p = ti+yj+<k, R = J { ( ~ - c ) ~ - B ~ [ ( y - q ) ~ + ( z - ( J ~ ] ) ,  
e = 1 for M > 1 and s = 2 for M < 1, * denotes Hadamard's finite part of an 
integral, and d denotes the domain of dependence of the point r : the region of the 
space r interior to the fore Mach cone from r in supersonic flow; the entire space 
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7 in subsonic flow. The second integral is recognized as a compressible general- 
ization of the Biot-Savart law. It may be recast as horseshoe vorticity by con- 
structing elemental trailing vortex pairs and articulating these to the bound 
vorticity at each point. Then (24) becomes 

The first term in ( 2 6 )  gives the effect of the sources, the second the effect of the 
bound vorticity, and the third the effect of the trailing vortex pairs. 

Equations (24) and (25) are invariant under a reffexion of the x- and y-axes, 
and therefore hold in reverse as well as forward flow. 

Invariance of drag of singularity distribution under flow reversal 
It may now be shown that the drag of the distribution of horseshoe vortices 

and sources over the regions T is unchanged by a reversal of the direction of the 
undisturbed stream.t Let U = U, > 0, the subscript F referring to forward 
flow. Substitution of ( 2 5 )  into ( 2 3 )  gives for the drag in forward flow 

DF = -p0fTdT*fdd7[ix~(r)+f(r)i]. 

It is desired to reverse the order of the two volume integrations. Such an opera- 
tion poses no special problems for subsonic flow, but for supersonic flow the 
singular integrands can pose difficulties in differentiating or integrating under 
an integral sign; the difference in approach to this problem distinguishes, in part, 
the research of Volterra and Hadamard concerning the wave equation. Reference 
is made to the definitions and approach of Lomax, Heaslet & Fuller (1951) or 
Heaslet & Lomax (1954). The operation of integration under the finite part sign 
can in fact be performed, and without the appearance of accretive terms, pro- 
vided that the two volume integrals are properly iterated. If the co-ordinate net 
is such that the inner or first integration in each case proceeds along a subsonic 
curve,$ and the two remaining integrations proceed along supersonic curves, 
then the proposed reversal is valid. The limit of the inner integration with respect 
to  T becomes, from the geometry, the domain of influence 6 of the point p. The 
outer integration with respect to 7 extends over all of the regions T. Physically, 
the drag of the horseshoe vortex and source at p is now being computed before 
summing over like singularities. The finite-part concept and the present preferred 
order of iteration used in both ( 2 3 )  and (25 )  together allow the singularities to 

t It is understood that M and po are unchanged under reversal. 
$ A subsonic curve has the property that each successive point, when the curve is 

traversed in one of the two possible senses, lies in the domain of influence of the preceding 
point. When no two points on a curve have this property, the curve is supersonic. 
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be treated as entities, each possessing a flow field and inducing forces like discrete 
singularities in incompressible flow. This freedom is implicit in the physical 
arguments of Hayes and Jones. 

By formal expansion of the products and rearrangement, the integrand of (27) 
can be written 

where 

and $R(P, r, = - $ d r y  p) 

from (36)) the subscript R referring to the reverse flow U, = - U, < 0. The first 
term is recognized from (23) as the expression for the elemental drag in reverse 
flow; the second is recognized from (25) as the expression for the elemental 
velocity in reverse flow with the roles of r and p interchanged. This result there- 
fore means that the drag induced on the horseshoe vortex and source at  r by 
the horseshoe vortex and source a t  p in forward flow, is equal to the drag induced 
on the horseshoe vortex and source at  p by the horseshoe vortex and source a t  
r in reverse flow. Trailing vortex pairs induce no streamwise perturbations and 
hence do not interfere with sources. 

Upon substitution of (28) into (27), written with the reversed order of integra- 
tion, and comparison with ( 2 5 ) )  there results 

DB’ = PoSTdT[ iXW(P)+f (P) i i . vR(p) ,  (29) 

since S becomes the domain of dependence of the point p in the reverse flow UR. 
As was just noted from (33), the right member of (29) is the drag of the distribution 

D y  = DR (30) 
in reverse flow. Thus 

for subsonic or supersonic flow. (The contribution to this result of any wing edge 
forces can be considered separately with the approach of Ursell & Ward (1950). 
It is possible to demonstrate that the statement (30) includes any edge forces 
and therefore holds for the complete pressure drag.) 

It is customary to reverse with the flow the signs of o (or SL) andfin order to 
maintain under reversal the same lateral force (18) and real volumes. This does 
not change the above conclusions. 

The shape of the bodies will, in general, be different in the reverse flow so that 
A ,  and therefore T, should be different. This distortion under reversal is not given 
properly here because the singularities have been attached to the space instead 
of associated with a fictitious captive fluid simulating the bodies and distorting 
with them. The effect is evidently of no concern in quasi-cylinder theory, and 
provided that the boundary conditions and pressure are also discussed on the 
undistorted surfaces instead of the true surfaces, the effect is also negligible in 
linear theory for more general bodies. The singularities need not, of course, 
occupy the entire region interior to each body. 
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A reverse-flow relation 
Consider an arrangement of bodies represented in the forward subsonic or 

supersonic flow U, by a distribution of horseshoe vortices o, and sources fF over 
the connected or unconnected regions T interior to the bodies, and such that the 
induced flow field satisfies 

W,.n  = -U,.n (31) 

on the body surfaces A with outward normal n. Also consider a related arrange- 
ment of bodies represented in the reverse flow UR by a different distribution oR 
and fR over the same regions T. Suppose that both distributions now appear 
together in forward flow and also in reverse flow. Let D,,RF be the interference 
drag in forward flow induced on the latter distribution by the former; let D , ,  
be the interference drag in reverse flow induced on the former distribution by 
the latter. A slight modification of the argument of the last section gives a 
property of two distinct, interfering distributions under flow reversal. There 
appears at once the desired reverse-flow relation connecting the original forward 
and reverse flows: 

D ,  RF e -Po IT (i x WR. v, + fR i . v,) dT 

= (i X 0,. VR +fFi. VR) dT DR,pR. (32) 

The preceding relation (30) evidently applies to the special case of (32) where the 
distributions in forward and reverse flow are the same. With u8e of ( 5 ) ,  (19), 
(20) and ( 2 2 ) ,  the above may be written 

In order to discuss boundary conditions and surface pressures, the integration 
over the regions interior to any or all of the bodies may be transformed to an 
integral over the corresponding surfaces of A by means of the volume-surface 
integral identity 

[v,v. W R  f VRV. w,- wp x (v x VR) -WR x (v x v,)] dT IT. 
(v,wR. n f VRW,. n-vp. WRn) d8, (34) 

= 

where n is the outward unit normal to A'. This identity was used by Ursell & 
Ward (1950; see also Ward 1955a), and, when the subscripts simply identify 
two solutions, it serves for the construction of solutions to the simultaneous 
equations (19) and (20) as does Green's theorem for the related formulation of 
the theory in terms of the potential. 

Unlike the corresponding transformation for the aerodynamic force, the use 
of (34) in (33) does not immediately give integrals of the form of (15) except for 
quasi-cylinders, in which case the last term in (34) is negligible and the Ursell- 
Ward theorem results at once. The desired mixed pressure-slope products can 
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be constructed by adding and subtracting terms, however, and the accretive 
terms will be shown in the next section to vanish; use of (31) and the relations 

UR = -u,, v,.wR = wp.vR 
then gives the identity 

V, . j (v,w,. n + v,w,. n - V, . w R n )  = [(v,. v p  t- 4 ~ ~ .  w,) wR. n 

(35) 

A, 

- (UR. VR + 4 v R .  WE) wp. n - 4(vp + VR). (WpWE. n - WRW,. n) 
+ 4Wp. VR(W, + W,) . n] d8. 

When a body is not a quasi-cylinder, the choice of the surface of the related body 
in reverse flow is, by definition, limited. 

The reverse-flow relation (32) or (33), together with the adjoining identities 
(34) and (35), can be used to provide information concerning the aerodynamic 
force on any body or arrangement of bodies to which linearized theory is applic- 
able. Formulation in terms of volume integrals as well as surface integrals proves 
useful. The required relationships have been formally assembled here; their 
nature and implications are exhibited in the applications below. 

Two-body arrangements in supersonic flow 
Discussion 

I n  this section the reverse-flow relation is used in several different ways for 
the determination of the drag and lift in supersonic flow of the interfering two- 
body arrangements shown in figure 1. Illustrated in figure 1 (a)  is a fusiform body 

z z 
t f 

Y 

. " R  (b)  

X 

FIGURE 1. Two-body arrangements. 

positioned under a wing; figure 1 ( b )  depicts a biplane; figure 1 ( c )  illustrates 
two fusiform bodies. The perturbation flow field in each case is generated by 
singularities distributed over the regions T, and Tz interior to the bodies 1 and 2 
with areas A ,  and A,, respectively. The flow field of each isolated body, respec- 
tively V ,  and V,, is assumed known in both forward and reverse flow; the 
analytical methods required are well known and need not be discussed here. 

Most features of the three arrangements appear in a discussion of the first, 
which exhibits the mixed interfering boundary types: the fusiform body is not 
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a quasi-cylinder whereas the wing is a plane quasi-cylinder. Linearized theory 
gives the isolated flow field of the former to the approximation (I 1) and the latter 
to the approximation (10). Since the interference does not modify these con- 
siderations, the relative magnitudes of the two thickness ratios are taken to be 
related by 

which defines the relative magnitudes of the perturbations. The order of approxi- 
mation for the arrangement remains as in (1 1) in terms of t,. The perturbation 
velocity satisfies (a), (5) and (6) and may be written 

t, = o[t; log t,], (36) 

v = v,+v,+v;+vg, (37) 

where V; and Vg are the interference flows created on A ,  and A,, respectively, by 
the mutual cross-flow. Thus, 

(V;+V,+V;).n = 0 on A,, (38) 

and (V;+V,+V;).n = 0 on A,, (39) 

because V and V, both satisfy (13) on A,, and V and V, both satisfy (13) on A,. 
V; must also satisfy the Kutta condition 

VL. k = finite (40) 

on any subsonic trailing edges of A,. The components of the perturbation velo- 
city associated with the fusiform body are dissimilar in magnitude near its 
surface and the required quadratic expression (17) for the pressure must be 
applied to the complete field (37), in general, because of quadratic coupling. On 
A,, however, the components of V, are all of order t:log t, like the components 
of V, and Vg. Equation (16) is then sufficient on A ,  or its reference surface. 

The problem of the determination of V; is that of the cambered wing. The 
cancellation of the cross-flow of V, + Vk on A ,  with V; could be accomplished 
with a line of multipoles using the method of von Kkm&n & Moore (1932). 
A different approach is possible, however, which provides information required 
for the application of the reverse-flow relation. Lighthill (1948; see also Ward 
19550,) has given the solution for the flow past a yawed axisymmetric fusiform 
body which has a ducted nose of finite diameter and a finite number of dis- 
continuities in slope, but which otherwise fulfils the requirements of slender- 
ness. The discontinuities in u at the surface due to the discontinuous cross-flow 
a t  the nose and to the discontinuous slopes are two-dimensional; the associated 
flow fields subside in a few diameters. It is found that the circumferential flow 
along the sections by planes x = const. may be computed with unmodified 
slender body theory for the purpose of computing the drag from (17). Lighthill 
(1954) has suggested that a more general fusiform body may be built up from this 
solution for a finite number of jumps in slope and camber on a slender body by 
passing to the limit of an infinite number of smoothed discontinuities. The 
solution for V, can be constructed in this way. The same approach would also 
apply for the determination of the camber-like interference flow V; produced by 
the wing cross-flow, which will, in general, exhibit discontinuities and vary too 
rapidly with x to excite an interference potential satisfying the Laplace equation 
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in the cross-planes. Since the cross-flow is of order t: log t,, it is seen from Light- 
hill’s solution that u; will be of order t: log t, at discontinuities in cross-flow and 
tf log t ,  when the cross-flow varies slowly with x; Lighthill’s generalization would 
then give actual magnitudes of u; within this range. Further, the gross order of 
magnitude of the circumferential flow associated with V; on A ,  is then t:logt, 
from slender body theory. The gross circumferential flow associated with V, 
must be of order t ,  and, according to these results, may be computed from slender 
body theory even if the body is not slender. This information is required to discuss 
the accretive terms in (35). 

Remarks concerning the phenomena on the surface A ,  in figure 1 ( a )  apply to 
both surfaces in figure 1 (b) .  Remarks concerning phenomena on A ,  apply to 
both surfaces in figure 1 (c). 

Reversal of flow direction with unchanged geometry 

Suppose first that the direction of flow is reversed without changing the 
geometry or orientation, measured with respect to the invariant co-ordinate 
system, of each isolated body in the arrangements considered. Interference flows 
are used in both directions, so that no geometric change due to interference 
accompanies the reversal. The required singularity distributions are, however, 
quite different. 

Choose T = T,+T,, A = A,+A,,  substitute (34) into (33), and use (35) and 
(7)  in the result, to obtain 

j 

f ~ ~ ~ ~ / P O ~ ~ ~ . ~ - ~ P , / P o ~ ~ , . ~ + : ~ ~ , + ~ , ~ . ~ ~ F + ~ , ~ ~ , . ~ l ~ ~  = 0. 

[( -P,/Po) W,.n + (%/PO) w,.n - W F +  V,). (WPW, a n -  w,w,. n) 
&+As ++W,.V,(W,+W,).n]dX = 0. (41) 

(42) 
and from (31) (W,+ W,).n = 0. (43) 

In  the reverse flow W,.n = -U,.n on A,  and A,, 

Equation (41) becomes 

Ai+& 
(44) 

Introduce on the surface A,, say, of a fusiform body an orthogonal curvilinear 
co-ordinate system. At each point on the section of A,  by planes x = const., 
let i be the unit vector previously defined, N be the unit outward normal, and 
Q be the unit tangent. The scalar product in the last term of (44) may be written 

(V,+V,).(W,+ W,) = -B2[(V,+VR).i]2+[(VB+VR).N]2+[(VF+VR).~]2. 
(45) 

The first term is of higher order as for the pressure relation (7). In  the boundary 
condition (13), V .  n may be replaced by V . N in linear theory, so that 

(46) 
With regard to the last term, expand V, and V, according to (37). For isolated 
closed slender bodies, the forward and reverse flows differ only in sign. Thus, 
even for arbitrary fusiform bodies, the circumferential components on A ,  of 
order t ,  vanish: 

(V, + V,). N = 0. 

(V,, + V,,) . Q = 0. (47) 
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The remaining circumferential components are of order t:logt, so that their 
squares are negligible in (44). Note that no mixed products of order t:logt, 
appear; terms of this order could not be discarded. 

On wing surfaces the last term in (44), as well as the quadratic terms in the 
pressure relation, are negligible a priori. Equation (44) therefore reduces to 

pRn.idS,  (48) 

(49) 
-4i+Aa $ p F n . i d S  = - 

Ai+Aa 

DF = DR 
$ 

art 
for the three arrangements. 

Evidently, the drag is also invariant under flow reversal with unchanged 
geometry for the special cases of an isolated, arbitrary, closed fusiform body 
and an isolated wing. If the former is a slender body, then this result follows 
independently from (30). For the latter and for other quasi-cylinders as in figure 
1 (b ) ,  the same result follows from the Ursell-Ward theorem, to which bodies it 
is applicable. The surfaces A may then be taken as both sides of the reference 
surfaces, the spatial distributions of singularities becoming surface distributions. 

Reversal of $ow direction with mutual distortion 

Suppose next that the direction of flow is reversed without changing the 
geometry or orientation of each isolated body which appears in the arrangements 
considered. Now, however, interference flows are used only in the forward 
stream. In  the reverse stream each body induces a cross-flow over the surface 
of the other, resulting in mutual geometric distortion when the bodies interfere. 
The reverse flow is completely defined by the geometry of the isolated bodies. 
The reverse-flow theorem is used to relate the drag in the forward flow of interest 
to the reverse flow discussed. For reasons already mentioned, it is sufficient to 
consider the boundary conditions and surface pressures in the reverse flow on 
the surfaces of the isolated bodies A, and A, instead of on the true distorted 
surfaces; use may then be made of (34). 

Consider specifically the arrangement in figure l ( a )  and choose again 
T = T,+ T2, A = A ,  +A,. If (34) is substituted into (33) and use is made of (35), 
the pressure relations, and the expressions 

vR = V1R+V2R, 

(WF+WIR).n = 0 on A,, 

there results after several cancellations 

f [ - ( P F / p O )  W 2 R * n +  (PR/pO) WF*n-(pF/pO) W I R * n l d S  
Aa 

+f [ - ( P F / p O )  WIR*n+ ((PR/pO) wF*n+ UF.VFW2R*n 
A1 

+ &(vF + v 1 R  + v 2 R )  (WF + w1R + W2R) WF. n] d x  = 0. (52) 
t This result must be qualified when wing edge forces are present. With use of tubular 

surfaces enclosing the singular edges, the result is found to hold for the drag including the 
contribution thereto of edge forces due to parabolic bluntness but, when the Kutta con- 
dition is satisfied in both directions, excluding the contribution thereto of edge forces 
due to suction. 
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As above, the scalar product in the last term in (52) may be written 
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(v, + V1R f v2,) - (wp + W1R + w2R) = - B2[(V, + v,R f V2,) * iI2 

+ [(VF + V1R + v 2 R )  - N12 + [(v, + V1R + v 2 R )  - .I2* (53) 

The first term is negligible. In  the second term, (V, + V,,) . N = 0 and V,, . N 
makes a negligible contribution. In  the third term, V ,  is expanded using (37); 
(Vlp + V I R ) .  Q = 0 and the remaining four components are negligible. 

In  the remainder of (52), use is next made of the boundary conditions satisfied 
by the several perturbation velocities, and there is obtained? 

D, = - ppn.idS- 

1 
f Ai 

+ f A 2 p R I l . i d S -  §As  $I,- uR V1R.NdS. (54) 

Here n is the outward unit normal to the undistorted surfaces in forward flow 
and the pressure p in each integral is as (16) or (17), according to the surface. 
The drag in forward flow is given by (54) as the drag in reverse flow due to the 
reverse pressures supported on the undistorted boundaries A ,  and A,, minus 

FIGURE 2. Example in which neither interference flow influences other body. 

the drag in forward flow due to the forward pressures supported on the inclined 
stream surfaces which are induced on each boundary by the cross-flow from the 
other in reverse flow. Note, however, that the linear pressure relation is to be 
used in the latter over the surface A,, instead of the quadratic relation generally 
appropriate to the nonquasi-cylindrical surface. 

Suppose that the interference flow created on each surface in the forward 
direction does not influence the other surface, as illustrated in figure 2. An 
example which is appropriate to figure 1 ( b )  of this type of interference is the two- 
dimensional Busemann biplane or a three-dimensional counterpart. The portion 
of the surface of each body in the domain of dependence of the other is then not 
influenced by the interference. Since the domain of dependence of a body in 
forward flow is its domain of influence in reverse flow, the surface pressures in 
the last two integrals of (54) depend on only the respective isolated flows over 
those portions of the surfaces where the reverse cross-flow is different from zero. 
The drag of the arrangement in forward flow can then be computed from (54) 
without determining the two interference flow fields. What is required is the 
flow field of each isolated body in reverse flow and the surface pressure on each 
isolated forebody in forward flow. When the reflexions are multiple, (54) requires 

f The footnote to (49) applies as well t o  (54). The integrals must be interpreted to include 
the contribution of any edge parabolic bluntness. 
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that the interference field be determined only over the portion of each body 
which appears in the domain of dependence of the other. 

Equation (54) and its implications apply as well to the arrangements in figure 
1 (a) and (c). In  the latter case, however, the linear pressure relation is to be used 
in the last integral. 

Subject to the edge-force qualification, (49) can be used together with (54) so 
that the mutual distortion occurs in the flow direction of interest. For example, 
Friedman & Cohen (1954) have considered two unyawed Sears-Haack bodies of 
revolution interfering as shown in figure 1 (c) in a supersonic flow (regarded here 
as the reverse flow). They neglected the pressures of the interference flows and 
took for DR the first two integrals in the right member of (54). The remaining 
two integrals can be used to estimate the error. Por single reflexions, the surface 
pressure on each body in forward flow is symmetric about its horizontal plane of 
symmetry and the normal cross-flow is almost antisymmetric. Therefore, the 
last two integrals are very small. Expansion of the cross-flow about the body 
axis and account for the asymmetric surface of integration gives the order of 
the last two integrals as no larger than t!logt,, which is negligible next to the 
order t: log t ,  of the leading two. 

Use of both volume and surface integrals 

The applications of the reverse-flow relation given thus far utilize surface 
integrals. When, for example, only part of the complete perturbation field is to 
be considered in one or both flow directions, as on surfaces where superposition 
is permissible, it  is convenient to employ volume integrations for any other 
bodies which are not quasi-cylinders, in order to use the drag decomposition 
discussed. Two such applications will now be presented in eonnexion with the 
arrangement in figure 1 (a). 

Choose T = Tl+Tz in (33) and use (34) in the second volume integral. After 
comparison of the first with (32), there is obtained 

(UF. VFw,. n - UR. VRwF. n) d 8  
c 

The first application is concerned with a rearrangement of (54). Let 

VF = VIF + V;F + V,, + V& and VR = VIE. (56) 

Equations (56) are substituted in (55) and use is made of the facts that toZF, a&, 
2F and f &  vanish over T,, and that the interference effects among the singu- 

Iarities distributed over TI vanish separately in virtue of (32). Insertion of (16) 
and (31) in the result gives 

Comparisonwith the right member of (54) shows that (57) re-expresses the sum 
of the fourth integral plus the contribution ofplR to the second integral as a drag 
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due to the cross-flow and pressure of V,, and V;, on the known distribution of 
singularities representing the isolated body in reverse flow. The remaining part 
of the second integral in the right member of (54) is the drag of the isolated wing 
in reverse flow. When (57) is used in (54)) the flow field of the fusiform body in 
reverse flow is required only over its surface. But the complete flow field of the 
isolated wing in both forward and reverse flow is then needed. As has already 
been discussed, V;, vanishes over T, for single interference reflexions. The two 
surface integrals over A ,  in the right member of (54) can also be written as volume 
integrals over T, with the aid of (34). 

The second application is concerned with the lift of the arrangement in 
figure 1 (a).  The lift in forward flow is that supported by the wing and follows by 
superposing the pressure due to V,, and V;,. The latter interference lift, given 
by 

-% = 2 j--d*P;FdK (58) 

where d, is the lower side of A,, can be obtained with a technique suggested 
by one used for isolated wings. Let V$R be the perturbation velocity induced by 
a flat plate in reverse flow which has an angle of attack a* and the same plan-form 
as the actual wing. To obtain this lift, the Kutta condition must be fulfilled by 
V,*, on any subsonic reverse trailing edges to exclude edge force contributions. 
If the actual wing is without camber and twist, VgR can correspond to the odd 
part of the actual reverse-flow potential of the isolated wing, and a* can be the 
actual angle of attack. Let 

and substitute in (55). The vanishing of some vorticity and source terms over 
T, is then noted, the boundary conditions 

W,.n=O onA,, (60) 

and 
URa* onlower A,, 

- URa* on upper A,, 
W,.n = 

are utilized, and (16) is inserted. The contributions of p,, and piF vanish in the 
leading term because of (61)) p &  is odd in z, and a* is constant. The result is 
seen t o  be 

a*L& f 2a*/d2p&dfl = - P , I T I [ i X  ( U ~ F + U ; F ) .  v ~ ~ + ( f , s f f ; ~ ) i . V ~ ~ ] d T .  

The interference lift in forward flow is expressed here in terms of an interference 
drag supported by the forward singularities interior to the interfering body, 
and due to the cross-flow and streamwise perturbations of the plate wing in 
reverse flow. For single reflexions, a;, andf;, vanish in the right member and 
the interference lift is then determined without knowledge of the interference 
flows, as before. In  fact, the lift can still be determined in this way if V ;  does 
influence the fusiform body. 

The identity (34) does not transform the volume integrals in the right members 
of (57) and (62) to surface integrals involving only the mixed pressure-slope 

(62) 
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products suggested by the respective integrands unless the cubic terms are 
suppressed, as for quasi-cylinders; the accretive terms could be evaluated, but, 
for them to vanish, it  is necessary that the effects of the isolated body appear in 
the final expressions for both flow directions (cf. (45) and (53)). This consequence 
of the facts that the body pressure relation is non-linear and variations across 
the body cannot be neglected is otherwise simply illustrated in (57), say, by 
setting wlR = 0 and f l R d T  = U,h”(~)dx for a line of sources representing a 
slender body; there results a line integral of the wing-induced linear pressure 
and body area along its axis. For applications such as the two just given, however, 
transformation is neither necessary, since boundary conditions are not in ques- 
tion, nor desirable, since the evaluation of surface integrals is generally more 
troublesome than the evaluation of the line integrals which commonly appear 
in specific problems. 

This research was supported by the United States Air Force through the Air 
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